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Abstract. In this paper I ask questions about the evolution

of self-organized activity cycles that are found in some ant

colonies. I use a computer model that generates periodic

activity patterns in interacting subunits and explore the

parameters of this model using a genetic algorithm in which

selecting on one aspect of the system produces the distinc-

tive self-organized pattern. The general point that I explore,

using the example of activity cycles, is that the observation

of a self-organized pattern does not mean that the pattern is

an adaptation. Self-organized patterns can represent non-

adaptive correlated responses to selection, exaptations or

even selectively disadvantageous traits. Evolution of self-

organized patterns requires genetic feedback between the

self-organized output and the subunits that produce the

pattern. Without this necessary feedback, a self-organized

system does not evolve.

Introduction

Many features of biological complexity result from self-

organization. Biological systems are, in general, global pat-

terns produced by local interactions. The biological struc-

tures that seem closest to the ideal of directed organization

are proteins that arise from a coding sequence of DNA.

Even here, the complex folded structure of a protein is not

simply coded in the DNAsequence. Protein structure is the

result of genetic and epigenetic processes that produce a

single or a few appropriate folded structures from the huge

number of stable and thermodynamically equivalent struc-

tures. Their structure is not specified uniquely by some

central pattern generator, the DNA sequence, but requires
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interactions among all of the molecular machinery of the

cell, including DNA. RNA. and other proteins (Voet and

Voet. 1995).

The adult body plan of an organism is a self-organized

system produced by the complex interactions among cells

and tissues mediated by differential gene expression, local

chemical communication among cells, and local regulation

that constitute development. The development of an organ-

ism is not simply coded by the DNAsequence, but is again

a process that is produced by a complex, self-organized

system with genetic and epigenetic components (Goodwin

1994; Sole and Goodwin. 2000).

Because social insect colonies are intermediate in their

degree of integration between a single soma and a collection

of unconnected individuals, they have been favorite subjects

for studies of self-organization (see, e.g.. Camazine et til.,

2001). This same intermediate position in the levels of

genetic integration also makes social insects favorite sub-

jects for studies on levels of selection, cooperation, and

conflict. The purpose of this paper is to look at an example

of selection operating on colony functions to change inter-

actions among workers in such a way as to alter the self-

organized activity patterns of the colony.

One of the appealing aspects of the study of self-orga-

nized systems is that we do not need anything specific from

biology to understand the existence of self-organization.

Self-organization occurs for reasons that have to do with the

organization of the interacting elements. When we recog-

nize that the same ripple patterns that can exist in sand

dunes also exist in biological patterns, some of us feel a

profound sense of connection between the physical pro-

cesses and the biological ones. However, it is undeniable

that biological self-organized systems have a capacity that

nonbiological self-organized systems usually do not have.

Inheritance produces temporal continuity that causes a sort

of memory in the system. The difference between the es-

sentially nonbiological self-organized systems and the self-

organized systems that most biologists are interested in is
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that sand grains have no system of inheritance. The sand

grains do not produce more sand grains that behave in

similar ways, or more importantly, with slight modifica-

tions. The pattern of ripples in the sand can be changed only

by changing the external conditions or by making a quali-

tative change to the material of which the sand is composed.

In biological systems, inheritance allows individual "sand

grains" to persist with slightly altered rules for interaction.

Biological self-organized systems should be interesting to

those who study self-organization because the inheritance

that is intrinsic to biological systems gives them a level of

complexity that is unique. Biological self-organized sys-

tems should be of interest to evolutionary biologists for two

reasons. The first is that self-organized systems produce

phenotypes that are subject to selection or other evolution-

ary processes. Secondly, evolutionary processes may oper-

ate on the inherited elements of self-organized systems.

These elements may be the subunits (e.g.. cells or organ-

isms), but more interestingly, they may be the interactions

among subunits. Systematic, microscopic changes in inter-

actions can produce sudden macroscopic phase-shifts in the

behavior of self-organized systems, and thus in the pheno-

type of a organism. This is a characteristic of complex

systems in general (e.g.. Bak et ai, 1988; Kauffman, 1993;

Goodwin, 1994; Sole and Goodwin, 2000). but natural

selection is a mechanism that produces these systematic

microscopic changes. A corollary is that selection on one

aspect of a biological self-organized system can produce

dramatic changes in some other aspect of the phenotype.

This duality between levels of organization of the output of

a self-organized system and the interacting components

mirrors the duality in levels of selection, or indeed between

phenotype and genotype. A standard caveat from evolution-

ary biology that I develop in this paper is that we must be

careful when we impute adaptation to the observation of

self-organization, even a self-organized system that is sub-

ject to selection.

Evolution in a Self-Organized System

In this paper I examine the model consequences of se-

lection operating on a complex interacting system. The

consequence is the emergence of a self-organized property

that is independent of selection operating on the system. The

system that I describe is that of activity cycles in ant

colonies. I use models of ant activity in which colonies can

vary in size and in how the worker ants interact with one

another. Using a genetic algorithm, I allow the population to

evolve in colony size and in the types of interactions.

Fitness is assigned to colonies on the basis of a trait that is

independent of the degree of periodicity in the colonies, that

is, independent of the expression of the self-organized phe-

notype.

The point that I want to make in this section is that

selection on a complex system can result in self-organized

patterns even when these patterns have no selective conse-

quence themselves. When we observe self-organized sys-

tems, we are under no compulsion to assume that the pattern

represents an adaptation. The general point that changes,

even when produced by selection, do not represent adapta-

tions has been made for such diverse examples as the

variety of patterns of the sutures of ammonite shells (Gould.

1977) and the changes in allele frequency due to genetic

hitchhiking (Hedrick, 1982). Specifically, I examine an in-

stance of a self-organized trait that occurs as a correlated

response to selection.

The metaphor that I use to make these points is ant colony

activity cycles. The activity within colonies of certain spe-

cies of ants is characterized by short-term cycles (Franks et

nl.. 1990; Hemerik et ai. 1990; Cole, 1991a, c, 1992; Tofts

et al.. 1992; Cole and Cheshire. 1995; Cole and Trampus.

1999; Boi et nl.. 1999). These activity patterns, while by no

means perfectly periodic, have a substantial periodic com-

ponent. The periodicity is not a property of individual

worker ants since they have activity patterns that are either

random or chaotic (Cole, 1991b, 1994). As larger numbers

of worker ants are added to an experimental aggregate, the

magnitude of the largest periodic component increases (Fig.

la; Cole and Cheshire, 1995). The periodic activity of

colonies represents a self-organized temporal pattern. There

is a spatial component to this pattern as well, since activity

spreads in a traveling wave throughout the colony (Cole and

Trampus, 1999; Boi et nl.. 1999).

Models of ant colony activity were first developed by

Sole et al. ( 1992) and expanded and modified by Miramon-

tes et al. (1993). Cole and Cheshire (1995), Sole and

Miramontes ( 1995), Sole and Delgado (1996), Delgado and

Sole (1997a, b, 2000). These models are mobile cellular

automata (MCA) or fluid neural network (FNN) models in

which an automaton (a worker ant) becomes active sponta-

neously and, when active, may move through the gridded

nest. The level of activity declines spontaneously at a con-

stant rate, until a threshold level is reached. Neighboring

ants may also influence each other's activity depending on

the types of interactions that are allowed that is, depend-

ing on the rule set for interactions. For example, we may
allow an active ant to influence the activity of a neighboring

active ant, or we may allow an inactive ant to influence the

activity of a neighboring active ant. The influence of an

active ant is to increase the activity of neighbors, and the

influence of an inactive ant is to reduce the activity of

neighbors. In this simplest model, we allow the ants to be in

one of two states, active or inactive. Active ants have an

activity level above a threshold, and inactive ants have an

activity level below this threshold. The activity of each ant

in subsequent time steps is computed according to an algo-

rithm that describes how the activity of the ant changes

throush time on its own, and the effect of the interactions of
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Figure 1. (A) Data from activity records of the ant Leptutln>rtt.\ /-

larjycei. The number of individuals is given on the abscissa and the power
in the first fourier component of the activity record is given on the ordmate.

Activity records are at least four hours long. (B) Magnitude of the first

fourier component in simulations of the MCAmodel described in the text

for varying numbers of automata. These figures are adapted from data

described by Cole and Cheshire (1945). ('Copyright 2002. The University

of Chicago Press. All rights reserved. Used with permission.)

each of its neighbors. The details of the model can be found

elsewhere (Sole et <//., 1992; Cole and Cheshire, 1995). The

rule sets are coded by a matrix that dictates how active or

inactive ants influence the activity of their active or inactive

neighbors. Since we have two activity states for the ants,

there are four terms in this matrix. The first term is the effect

that an active ant has on another active ant. A value of 1

indicates that the interaction is allowed, and a value of

indicates that the interaction is forbidden. It is convenient to

speak of 7,
:

1 rules, to indicate that active ants are

allowed to influence the activity of other active ants. For

example, 7 4
= rules would indicate that inactive ants are

forbidden to influence the activity of inactive ants.

Since the four terms of the interaction matrix can be

either or 1, there are 16 rule sets that apply to this model.

Earlier work (Cole and Cheshire, 1995) showed that if the

model follows the rule 7,
==

1, then as larger numbers of

workers are added to the system, the degree of periodicity of

the simulated outcome increases in the same way that ex-

perimental results do (Fig. Ib). In other words. 7,
=

1 rule

sets are necessary and sufficient to generate periodic activ-

ity; the other rules are not critical. Since we are speaking of

social behavior, we might regard this as a social facilitation

term.

Having 7,
=

1 means that active ants stimulate other

active ants: in other words, there is a autocatalytic term.

Since ants are allowed to move only one space step per time

step, there is also an implicit time delay in the system as a

whole. Active ants cannot influence ants more than one

spatial step away. The activity pattern of the colony is due

to a reaction-diffusion system (Murray, 1989) that exhibits

self-organized activity cycles that occur as waves propagat-

ing throughout the colony.

However, the fact that these patterns can be produced
does not mean that they represent an adaptation. The next

step is to produce a model of the evolution of activity

patterns and colony size in ants. I start with the assumption

that activity cycles themselves have no functional or selec-

tive consequence. When I make this assumption in the

model, I am not claiming that activity cycles have no

functional consequence, I am just exploring the conse-

quence of making that assumption. Delgado and Sole

(2000) use the same models to consider possible increases

in colony efficiency that may result from periodicity in

activity. What I assume does have selective value is the rate

with which an ant can traverse the colony. I take as a

reasonable assumption that the longer the time that is re-

quired for an ant to move between specified locations in the

nest (for example, from one side of the nest to the other), the

longer the time required for food or information to travel

through the nest. Provided food is carried by ants or infor-

mation is propagated by physical contact, these are reason-

able assumptions. The assumption that I am making is that

colonies in which food or information or workers them-

selves travel more quickly from place to place have higher

fitness. The fitness of a colony that has a particular rule set

will be the reciprocal of the time required for transiting the

nest.

The strategy is to take a model population of "ant colo-

nies" and follow the changes in the rule sets used by

colonies. Initially, all colonies are composed of three work-

ers with 7
1

=
7-,

= 7 3
= 7 4

= 0; workers are not allowed

to influence the activity of any other workers. In each time

step, fitness is assigned by noting the transit time of workers

within colonies that use particular interaction rules. Fitness

varies with the size of the colony and the rule set that the

colony is using. Fitness assignments were made by perform-

ing 10 simulations for each of the 16 rule sets using 3, 5. 7,

II, 15. 20. 25. 30. 35. 40, 45. 50. 55. 60. and 65 workers

(since the same grid size is used, this results in increasing

density). In each simulation a single transit time was mea-

sured. A fourth order polynomial was fitted to the relation of

transit time and colony size to interpolate the nonlinear

relationships. The polynomial was then used to calculate

transit time, or I /fitness for a particular combination of rule
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Figure 2. The outcome of selection for various rule sets in the genetic

algorithm described in the text. (A) The proportion of colonies that obey

the J I
=

I , J2 = 1,73= 1 or 74 =
1 rule through time, starting with

a colony size of three workers with all workers obeying the rule 71 = 72 =

73 = 74 = 0. 73 =
1 becomes fixed in the population first, followed

rapidly by 71 = 1. Both the 72 =
1 and the 74 =

1 rule transiently reach

high proportions before declining in frequency. The 71 =
1 and 73 =

1

rules do not remain fixed due to recurrent mutation. (B) The average colony

size of the 1000 colonies composing the population.

set and colony size. The mutation rate, going up or down in

colony size (in one-worker increments) or changing one of

the rules (from to 1 or back) was 0.01. The population of

1000 colonies was repopulated by random replication of

colonies with probabilities based on a colony's relative

fitness.

The outcome of this genetic algorithm is shown in Figure

2a. Both rules J
_,

=
1 and 7,

=
1 rapidly go to near fixation

in the population. Other rules are transiently selected for

because colony size is changing as well (Fig. 2b). Selection

on transit time produced a rule set that generates self-

organized activity cycles. These self-organized patterns are

themselves not the outcome of selection; they have no effect

on function or fitness, and yet they appear due to selection

on transit time. They are a correlated response to selection.

A second consequence of this selection is that it produces

activity patterns of greater complexity. For each rule set. I

measured the complexity of the activity record as the aver-

age mutual information per pair of ants (Langton, 1992;

Sole and Miramontes, 1995). The mutual information in a

pair of activity records is the sum of the entropy in each

ant's activity record minus the entropy in the joint activity

record: entropy of ant 1 + entropy of ant 2 -
joint entropy.

Entropy is, S/>, log-, /?,, summing over the proportion. />,.
ot

time that the aggregate spends in each of the n + 1 activity

states (n = number of ants). If the ants behave indepen-

dently, joint entropy equals the sum of the individual en-

tropies and the mutual information is zero. If the ants remain

in one behavioral state, then the sum of the entropies is low

and the mutual information is low as well. For each aggre-

gate I calculated the mutual information per pair of ants and

analyzed their average values. The average mutual informa-

tion per pair of ants is shown in Figure 3 for various rule

sets. When selection operates on the speed of movement

through the nest, the correlated effect is to increase the

complexity of activity patterns. In this simulation, colony

size and the rule sets coevolve to place the activity pattern

near the peak of complexity, or in the region that Langton

(1992) calls "edge of chaos."

Discussion

As with any complex trait, the observation of a self-

organized pattern says little about the functional conse-

quence of the pattern. In the model results, the self-

organized structure is neither advantageous nor

disadvantageous; it is simply nonadaptive. However, the

self-organized trait could be disadvantageous if we measure

the effect that increasing expression has on fitness, provided

this effect is less than the increase in fitness gained through

selection on the other trait. Wemight measure the effect that

activity cycles have on fitness and detect a negative rela-

tionship. Provided the negative effects of activity cycles are

more than balanced by the positive effects on transit time,

particular rule sets that generate periodic activity could be at

a selective advantage.

Finally, it is possible that a self-organized pattern could

be produced as a correlated response but then be acted upon

by selection in the future. Under a new set of circumstances,

the self-organized pattern may have a positive effect. This

would be an exaptation in the sense of Gould and Vrba

( 1982). Selection on the self-organized pattern may modify

it to become more effective at producing these positive

consequences; however, the self-organized pattern could

not be regarded as an adaptation. Subsequent modifications

to the system to produce additional changes should be

regarded as secondary adaptations, although it would still be

fair to regard the pattern itself as an exaptation. Wecould

imagine, for example, that cycles of activity are produced in

ant colonies by selection operating on the level of activity of

individual worker ants. The existence of activity cycles may
then be co-opted to improve certain colony functions ac-

cording to the mechanism suggested by Delgado and Sole

(2000).

Self-organized systems happen, but that may not mean

anything. Logically, the possibilities are that they have no

selective consequence (they are nonadaptive), they contrib-
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self-organized pattern itself has no influence on the repro-

duction of those that have inheritance, the self-organized

pattern may change, but it does not evolve.
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